In-Season Strength Training: Part One
/Welcome back from a seemingly very short summer. I decided to take the summer off from writing but am always thinking of articles or topics to write about. Since it’s the start of the fall season of sports I thought in-season training would be a interesting topic to explore.
First of all, in-season strength training is the training that’s performed during the season, not prior or after the season. I get asked from athletes all the time “What should I do during the season� I think many athletes and coaches struggle with how to determine the correct amount of work that’s necessary to maintain what the athlete has spent the entire off-season developing. Hopefully, the athlete prepared during the off or slow season! For athletes the off-season is the opportunity to really recover, regenerate, grow, develop, and mature. We live in an era were almost all sports have evolved into year round participation, so it‘s become difficult to balance and to avoid over-training.
Over-training should be a real concern for athletes and coaches alike. Over-training can lead to illness, repressed immune system, injury, muscle strains, pulls, and tears, decreases in performance, speed and strength, depression, inability to focus and concentrate, formation of soft tissue adhesions, tight & shortened muscle tissue, structural imbalance, insomnia, suppressed testosterone and growth hormone production, irritability, and mood swings. These are just some of the more apparent symptoms and conditions.
The objectives to consider for in-season strength training should be, what are the demands of the activity, sport, or position? The considerations should include the exercise selection, energy system, muscle fiber type, rep range, weight load-intensity, and work volume.
The first consideration is the exercise selection, what exercise does the athlete need to improve their performance, including structural needs? Upon observation or assessment does the athlete have any postural, structural, muscle imbalance, or movement flaws? If so they need to be addressed. Next, does the athlete need muscle specific strength, power, or endurance to optimize their performance? Again, indentify and address those needs.
For example a lineman in football with issues of jamming their opponent off the line may benefit from rotator cuff and scapular strengthening exercises. A sprinter who has difficulty starting out of the blocks may benefit from deep squats or platform dead lifts. While a midfielder in soccer with stride issues might require split or single leg squats or lunges to best help their ability. Obviously there are exercises that all individuals may benefit from that enhance their athletic ability i.e., jumping, quickness, stopping, change of direction, which can be determined during the athlete’s tryout or assessment phase.
Another example, cheerleaders who are subjected to high levels of impact force from tumbling and landing need strength through their legs, spine torso, and arms to absorb and displace the stress, in order to prevent and reduce injury to those areas. The stronger the muscles the better the stress and energy displacement.
The second consideration might be, what energy system is used by the athlete in their particular sport or position? So whether it’s anaerobic energy needing fast twitch muscle fibers or aerobic energy requiring slow twitch muscle fibers, the energy system determines how the athlete should train to enhance their ability. For example a volleyball player needs to react quickly and jump for short bursts, interspersed with periods of waiting. So their energy system is more anaerobic and requires high energy phosphate compounds like adenosine tri-phosphate (ATP), creatine phosphate (CP), and carbohydrate-sugar compounds i.e., glycogen, or a combination thereof for fuel. Whereas a cross-country runner will need more endurance with occasional surges of speed, requiring primarily oxygen, fats, and glycogen for fuel.
In Part Two we will examine the necessary rep range, weight load-intensity, muscle fiber type, and work volume requirements of the athlete.